expand for answer

Least significant bit steganography

A substitution method of steganography where the right most bit in a binary notation is replaced with a bit from the embedded message. This method provides “security through obscurity,” a technique that can be rendered useless if an attacker knows the technique is being used.


Similar items:
The method of steganography where a secret is embedded in a harmless message. See also jargon code.
[view]
(1) The method of concealing the existence of a message or data within seemingly innocent covers. (2) A technology used to embed information in audio and graphical material. The audio and graphical materials appear unaltered until a steganography tool is used to reveal the hidden message. The act of embedding messages within another message, commonly used within an image or a WAV file.
[view]
The actual binary code of an encryption key, which is presented in hexadecimal notation.
[view]
The method of steganography where a tool, device, or method is used to conceal a message. Examples are invisible inks and microdots.
[view]
<p>FIPS 140-2, Security Requirements for Cryptographic Modules, May 2001.</p><p>This term refers to the accreditation used to distinguish between secure and well-established crypto modules produced in the private sector. It stands as a certification for those producers who need them to be used in regulated industries that typically collect, store, transfer, and share data that is deemed to be sensitive in nature but not classified.<br></p><p>FIPS 140-2 defines four levels of security, simply named "Level 1" to "Level 4". It does not specify in detail what level of security is required by any particular application.</p><p>Level 1<br>Security Level 1 provides the lowest level of security. Basic security requirements are specified for a cryptographic module (e.g., at least one Approved algorithm or Approved security function shall be used). No specific physical security mechanisms are required in a Security Level 1 cryptographic module beyond the basic requirement for production-grade components. An example of a Security Level 1 cryptographic module is a personal computer (PC) encryption board.</p><p>Level 2<br>Security Level 2 improves upon the physical security mechanisms of a Security Level 1 cryptographic module by requiring features that show evidence of tampering, including tamper-evident coatings or seals that must be broken to attain physical access to the plaintext cryptographic keys and critical security parameters (CSPs) within the module, or pick-resistant locks on covers or doors to protect against unauthorized physical access.</p><p>Level 3<br>In addition to the tamper-evident physical security mechanisms required at Security Level 2, Security Level 3 attempts to prevent the intruder from gaining access to CSPs held within the cryptographic module. Physical security mechanisms required at Security Level 3 are intended to have a high probability of detecting and responding to attempts at physical access, use or modification of the cryptographic module. The physical security mechanisms may include the use of strong enclosures and tamper-detection/response circuitry that zeroes all plaintext CSPs when the removable covers/doors of the cryptographic module are opened</p><p>Level 4<br>Security Level 4 provides the highest level of security. At this security level, the physical security mechanisms provide a complete envelope of protection around the cryptographic module with the intent of detecting and responding to all unauthorized attempts at physical access. Penetration of the cryptographic module enclosure from any direction has a very high probability of being detected, resulting in the immediate deletion of all plaintext CSPs.<br>Security Level 4 cryptographic modules are useful for operation in physically unprotected environments. Security Level 4 also protects a cryptographic module against a security compromise due to environmental conditions or fluctuations outside of the module's normal operating ranges for voltage and temperature. Intentional excursions beyond the normal operating ranges may be used by an attacker to thwart a cryptographic module's defenses. A cryptographic module is required to either include special environmental protection features designed to detect fluctuations and delete CSPs, or to undergo rigorous environmental failure testing to provide a reasonable assurance that the module will not be affected by fluctuations outside of the normal operating range in a manner that can compromise the security of the module.</p>
[view]


There are no comments yet.

Authentication required

You must log in to post a comment.

Log in