expand for answer

Incomplete parameter checking

A system fault that exists when all parameters have not been fully checked for correctness and consistenSystem flaw that exists when the operating system does not check all parameters fully for accuracy and consistency, thus making the system vulnerable to penetration.


Similar items:
Mirror image backups (also referred to as bitstream backups) involve the backup of all areas of a computer hard disk drive or another type of storage media (e. g. , Zip disks, floppy disks, Jazz disks, etc. ). Such mirror image backups exactly replicate all sectors on a given storage device. Thus, all files and ambient data storage areas are copied. Such backups are sometimes referred to as “evidencegrade” backups and they differ substantially from standard file backups and network server backups. The making of a mirror image backup is simple in theory, but the accuracy of the backup must meet evidence standards. Accuracy is essential and to guarantee accuracy, mirror image backup programs typically rely on mathematical CRC computations in the validation process. These mathematical validation processes compare the original source data with the restored data. When computer evidence is involved, accuracy is extremely important, and the making of a mirror image backup is typically described as the preservation of the “electronic crime scene. ”
[view]
System analysis and penetration technique in which the specification and documentation for an information system are analyzed to produce a list of hypothetical flaws. This list is prioritized on the basis of the estimated probability that a flaw exists, on the ease of exploiting it, and on the extent of control or compromise it would provide. The prioritized list is used to perform penetration testing of a system.
[view]
Builtin capability of a system to provide continued correct execution in the presence of a limited number of hardware or software faults. The ability of a system to suffer a fault but continue to operate. Fault tolerance is achieved by adding redundant components such as additional disks within a redundant array of independent disks (RAID) or additional servers within a failover clustered configuration.
[view]
<p>FIPS 140-2, Security Requirements for Cryptographic Modules, May 2001.</p><p>This term refers to the accreditation used to distinguish between secure and well-established crypto modules produced in the private sector. It stands as a certification for those producers who need them to be used in regulated industries that typically collect, store, transfer, and share data that is deemed to be sensitive in nature but not classified.<br></p><p>FIPS 140-2 defines four levels of security, simply named "Level 1" to "Level 4". It does not specify in detail what level of security is required by any particular application.</p><p>Level 1<br>Security Level 1 provides the lowest level of security. Basic security requirements are specified for a cryptographic module (e.g., at least one Approved algorithm or Approved security function shall be used). No specific physical security mechanisms are required in a Security Level 1 cryptographic module beyond the basic requirement for production-grade components. An example of a Security Level 1 cryptographic module is a personal computer (PC) encryption board.</p><p>Level 2<br>Security Level 2 improves upon the physical security mechanisms of a Security Level 1 cryptographic module by requiring features that show evidence of tampering, including tamper-evident coatings or seals that must be broken to attain physical access to the plaintext cryptographic keys and critical security parameters (CSPs) within the module, or pick-resistant locks on covers or doors to protect against unauthorized physical access.</p><p>Level 3<br>In addition to the tamper-evident physical security mechanisms required at Security Level 2, Security Level 3 attempts to prevent the intruder from gaining access to CSPs held within the cryptographic module. Physical security mechanisms required at Security Level 3 are intended to have a high probability of detecting and responding to attempts at physical access, use or modification of the cryptographic module. The physical security mechanisms may include the use of strong enclosures and tamper-detection/response circuitry that zeroes all plaintext CSPs when the removable covers/doors of the cryptographic module are opened</p><p>Level 4<br>Security Level 4 provides the highest level of security. At this security level, the physical security mechanisms provide a complete envelope of protection around the cryptographic module with the intent of detecting and responding to all unauthorized attempts at physical access. Penetration of the cryptographic module enclosure from any direction has a very high probability of being detected, resulting in the immediate deletion of all plaintext CSPs.<br>Security Level 4 cryptographic modules are useful for operation in physically unprotected environments. Security Level 4 also protects a cryptographic module against a security compromise due to environmental conditions or fluctuations outside of the module's normal operating ranges for voltage and temperature. Intentional excursions beyond the normal operating ranges may be used by an attacker to thwart a cryptographic module's defenses. A cryptographic module is required to either include special environmental protection features designed to detect fluctuations and delete CSPs, or to undergo rigorous environmental failure testing to provide a reasonable assurance that the module will not be affected by fluctuations outside of the normal operating range in a manner that can compromise the security of the module.</p>
[view]
The term “computer forensics” was coined in 1991 in the first training session held by the International Association of Computer Specialists (IACIS) in Portland, Oregon. Since then, computer forensics has become a popular topic in computer security circles and in the legal community. Like any other forensic science, computer forensics deals with the application of law to a science. In this case, the science involved is computer science and some refer to it as Forensic Computer Science. Computer forensics has also been described as the autopsy of a computer hard disk drive because specialized software tools and techniques are required to analyze the various levels at which computer data is stored after the fact. Computer forensics deals with the preservation, identification, extraction, and documentation of computer evidence. The field is relatively new to the private sector, but it has been the mainstay of technologyrelated investigations and intelligence gathering in law enforcement and military agencies since the mid1980s. Like any other forensic science, computer forensics involves the use of sophisticated technology tools and procedures that must be followed to guarantee the accuracy of the preservation of evidence and the accuracy of results concerning computer evidence processing. Typically, computer forensic tools exist in the form of computer software.
[view]


There are no comments yet.

Authentication required

You must log in to post a comment.

Log in