Static Token

A physical means to provide identity, usually not employed as an authentication factor. Examples include a swipe card, a smart card, a floppy disk, a USB RAM dongle, or even something as simple as a key to operate a physical lock.


Similar items:
A temporary storage area, usually in RAM. The purpose of most buffers is to act as a holding area, enabling the CPU to manipulate data before transferring it to a device. Because the processes of reading and writing data to a disk are relatively slow, many programs keep track of data changes in a buffer and then copy the buffer to a disk. For example, word processors employ a buffer to keep track of changes to files. Then when you save the file, the word processor updates the disk file with the contents of the buffer. This is much more efficient than accessing the file on the disk each time you make a change to the file. Note that because your changes are initially stored in a buffer, not on the disk, all of them will be lost if the computer fails during an editing session. For this reason, it is a good idea to save your file periodically. Most word processors automatically save files at regular intervals. Another common use of buffers is for printing documents. When you enter a PRINT command, the operating system copies your document to a print buffer (a free area in memory or on a disk) from which the printer can draw characters at its own pace. This frees the computer to perform other tasks while the printer is running in the background. Print buffering is called spooling. Most keyboard drivers also contain a buffer so that you can edit typing mistakes before sending your command to a program. Many operating systems, including DOS, also use a disk buffer to temporarily hold data that they have read from a disk. The disk buffer is really a cache.
[view]
Authentication that uses two or more factors of authentication. Multifactor authentication requires different factors (something you know, something you have, and something you are), not just multiple authentication methods in a single factor such as a password and a PIN, both in the something-you-know factor.
[view]
Pronounced cash, a special highspeed storage mechanism. It can be either a reserved section of main memory or an independent highspeed storage device. Two types of caching are commonly used in personal computers: memory caching and disk caching. A memory cache, sometimes called a cache store or RAM cache, is a portion of memory made of highspeed static RAM (SRAM) instead of the slower and cheaper dynamic RAM (DRAM) used for main memory. Memory caching is effective because most programs access the same data or instructions over and over. Disk caching works under the same principle as memory caching, but instead of using highspeed SRAM, a disk cache uses conventional main memory. When data is found in the cache, it is called a cache hit, and the effectiveness of a cache is judged by its hit rate.
[view]
A type of computer memory that can be accessed randomly; that is, any byte of memory can be accessed without touching the preceding bytes. RAM is the most common type of memory found in computers and other devices, such as printers. There are two basic types of RAM: dynamic RAM (DRAM) and static RAM (SRAM).
[view]
<p>FIPS 140-2, Security Requirements for Cryptographic Modules, May 2001.</p><p>This term refers to the accreditation used to distinguish between secure and well-established crypto modules produced in the private sector. It stands as a certification for those producers who need them to be used in regulated industries that typically collect, store, transfer, and share data that is deemed to be sensitive in nature but not classified.<br></p><p>FIPS 140-2 defines four levels of security, simply named "Level 1" to "Level 4". It does not specify in detail what level of security is required by any particular application.</p><p>Level 1<br>Security Level 1 provides the lowest level of security. Basic security requirements are specified for a cryptographic module (e.g., at least one Approved algorithm or Approved security function shall be used). No specific physical security mechanisms are required in a Security Level 1 cryptographic module beyond the basic requirement for production-grade components. An example of a Security Level 1 cryptographic module is a personal computer (PC) encryption board.</p><p>Level 2<br>Security Level 2 improves upon the physical security mechanisms of a Security Level 1 cryptographic module by requiring features that show evidence of tampering, including tamper-evident coatings or seals that must be broken to attain physical access to the plaintext cryptographic keys and critical security parameters (CSPs) within the module, or pick-resistant locks on covers or doors to protect against unauthorized physical access.</p><p>Level 3<br>In addition to the tamper-evident physical security mechanisms required at Security Level 2, Security Level 3 attempts to prevent the intruder from gaining access to CSPs held within the cryptographic module. Physical security mechanisms required at Security Level 3 are intended to have a high probability of detecting and responding to attempts at physical access, use or modification of the cryptographic module. The physical security mechanisms may include the use of strong enclosures and tamper-detection/response circuitry that zeroes all plaintext CSPs when the removable covers/doors of the cryptographic module are opened</p><p>Level 4<br>Security Level 4 provides the highest level of security. At this security level, the physical security mechanisms provide a complete envelope of protection around the cryptographic module with the intent of detecting and responding to all unauthorized attempts at physical access. Penetration of the cryptographic module enclosure from any direction has a very high probability of being detected, resulting in the immediate deletion of all plaintext CSPs.<br>Security Level 4 cryptographic modules are useful for operation in physically unprotected environments. Security Level 4 also protects a cryptographic module against a security compromise due to environmental conditions or fluctuations outside of the module's normal operating ranges for voltage and temperature. Intentional excursions beyond the normal operating ranges may be used by an attacker to thwart a cryptographic module's defenses. A cryptographic module is required to either include special environmental protection features designed to detect fluctuations and delete CSPs, or to undergo rigorous environmental failure testing to provide a reasonable assurance that the module will not be affected by fluctuations outside of the normal operating range in a manner that can compromise the security of the module.</p>
[view]


There are no comments yet.

Authentication required

You must log in to post a comment.

Log in